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ABSTRACT

The structural pattern of rainfall data exhibits random fluctuations over time and space. Utilizing concepts

of fractal theory, it has been possible to identify characteristics of rainfall data beyond simple statistical

indicators of their randomness. The objective of this research was to identify the spatial variation of the Hurst

exponent, extracted through standard wavelet techniques from time series of daily rainfall data in the state of

Zacatecas, Mexico. The Hurst exponent was extracted for 26 locations using the reference techniques for

auto-affine traces—in particular, the wavelets method. Results have shown that the Hurst exponents of

rainfall time series are negatively influenced by altitude; thus, stations located at higher altitudes were

characterized by Hurst exponents indicating more nonpersistent behavior. The trends among geographical

variables (west longitude and latitude) and climatic parameters (annual rainfall and number of rainy days)

and their relationship with the Hurst exponent were also analyzed.

1. Introduction

Variations in dynamic and thermodynamic processes

cause in the atmosphere nonlinear responses. In dynamic

systems, this kind of response generates irregularity,

which may show a random pattern of a certain type. To

understand the system’s irregular pattern for prediction

purposes, it is necessary to decide if its dynamic follows

a chaotic, random, or deterministic structural pattern

(Silva et al. 2006).

Understanding the randompatterns of climate is a key

aspect in programming preventive activities to better

meet the possible occurrences of adverse events that

threaten human population or agricultural production

systems, such as droughts or floods (Men et al. 2004), as

well as to improve physical and biotic resources man-

agement (Bullock 2003).

Climate is a dynamic system, and its irregularities or

variations are subjected to the influence of stochastic

and cyclic factors. Fractal theory is an efficient tool to

describe the irregular and complex behavior of dynamic

systems (Men et al. 2004).

a. Fractal characterization of rainfall time series

The structural pattern of rainfall data exhibits fluc-

tuations in time and space. Fractal theory has helped

to understand the statistical trends of rainfall time se-

ries in terms of categorizing their persistence, anti-

persistence, or chaotic behavior. The established scale

invariance of rainfall time series has helped to obtain

information even in ungauged areas and to generate

databases for forecasting purposes (Olsson et al. 1992;

Olsson and Niemczynowicz 1996; Radziejewski and

Kundzewicz 1997; Miranda et al. 2004).
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Burgos and P�erez Vald�es (1999) used fractal indexes

to compare the randomness from several rainfall time

series in a decade scale and to obtain an estimation of

their normality. In a similar way, Rangarajan and Sant

(2004) analyzed Indian climatic dynamics using fractal

dimension theory and found that the precipitation dur-

ing the southwest monsoon is affected by the tempera-

ture and pressure variability in the previous winter. At

a spatial scale, the fractal patterns of rainfall series are

influenced by geographic aspects, whereas their tem-

poral tendencies depend on the local climatic conditions

(Kyriakidis et al. 2004).

b. Environmental variability in the state of Zacatecas

The state of Zacatecas is located in the north-central

region of Mexico (218090–258090N, 1008470–1048100W)

and has extended flat, desert lands with valleys inserted

among high hilly lands in the northern part, while

mountains and steep-slope lands prevail in the southern

part, named Los Ca~nones. The state of Zacatecas has an

area of 74 708 km2 (INEGI 2006) that represents 3.7%

of the Mexican territory. Annual rainfall range is from

less than 300 to more than 700mm (Fig. 1). This rainfall

gradient results in contrasting vegetation types and high

possibilities of natural resources utilization (Medina

Garc�ıa and Ruiz Corral 2004).

This extensive spatial variation of the average annual

rainfall in Zacatecas is the result of geographic and to-

pographic variables (latitude, longitude, and altitude),

producing the driest region in the north and the wettest

in the southwest part of the state of Zacatecas (Medina

Garc�ıa and Ruiz Corral 2004). Orographically, it is

formed by the confluence of four physiographic regions:

Sierra Madre Occidental from the western part, Sierra

Madre Oriental from the northern and central parts,

Meseta Central from the central part, and the trans-

Mexican Volcanic Belt from the southeast. The altitu-

dinal range is 2127m, with the highest site (3200m)

located at the Sierra elAstillero, in the county ofMazapil,

and the lowest one (1073m) at San Agustin, in the mu-

nicipality of Juchipila. The mean altitude above sea level

is 2230m.

Most of Zacatecas territory has a subtropical arid

temperate climate (MedinaGarc�ıa et al. 1998); however,
some climate variants are subtropical arid semihot

(northern regions) and subtropical semiarid temperate

(southern and southwestern regions). Mean annual tem-

perature is between 168 and 188C, and mean annual

precipitation is 490mm, occurring mainly in summer. In

some regions of Zacatecas, the rainfall is not enough to

satisfy even 50% of the crop’s evapotranspiration needs

(Mojarro 2004).

FIG. 1. Spatial variability of the mean annual rainfall in the state of Zacatecas, Mexico (Medina

Garc�ıa et al. 2003).
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In Mexico, several measures of climate characteriza-

tions have been used, taking as the main parameter the

coefficient of variation of the rainfall series CV5 d/m,

where d is the standard deviation and m is the mean of

the rainfall record. Results have shown a negative cor-

relation between rainfall magnitude and this coefficient,

with the highest values observed in the arid portion of

the country (Wall�en 1955; Mosi~no and Garc�ıa 1966;

Granados Ram�ırez et al. 2004; Peralta-Hern�andez et al.

2008). The objective of this research was to quantify the

spatial variation of the randomness of daily rainfall time

series in the state of Zacatecas, Mexico, using a fractal

approach.

2. Methods

a. Weather stations

The state of Zacatecas has 98 weather stations; out of

them, 26 were selected for this research according to the

criteria of sufficient data period length (with a minimum

of 20 yr of valid information between 1961 and 2003) and

representativeness of all parts of Zacatecas (Table 1;

Fig. 2). From this record, years with four ormoremonths

of missing data were eliminated from the analysis, as well

as those years with two or moremonths withmissing data

within the rainy season. All selected stations met these

requirements except the Cedros and Coapas stations,

whose records only started in 1971 and were only in-

cluded in order to meet the criterion of regional repre-

sentativeness. For time series analysis, daily records of

rainfall were considered in each station, that is, those

days without record were included as well. Missing data

were substituted with computed ones, utilizing the cli-

mate generator ClimGen (St€ockle and Nelson 2003).

b. Fractal analysis

For obtaining the Hurst exponents, each rainfall file

was transformed into a time series file (.ts file-name

suffix) to be used in the Benoit program [reviewed in

Seffens (1999)].1 With this software, the Hurst exponent

can be extracted from the rainfall time series using

several reference techniques for self-affine traces; in this

research, we only used the wavelets method.

1) THE HURST EXPONENT

The Hurst exponent measures the long-term memory

spread of a dataset. According to its value, a time series

is classified as persistent (0.5 , H # 1) or nonpersistent

TABLE 1. Location, altitude, and period of rainfall time series for weather stations in the state of Zacatecas (fromMedinaGarc�ıa andRuiz

Corral 2004).

Station County Lon (W) Lat (N) Alt (m MSL) Period

Agua Nueva Villa de Cos 1028090 238460 1932 1963–2003

Camacho Mazapil 1028220 248260 1658 1961–2003

Ca~nitas Ca~nitas de Felipe Pescador 1028430 238460 1932 1961–2000

Cedros Mazapil 1018460 248200 1763 1971–2003

Coapas Mazapil 1028100 238500 2000 1971–2003

Concepci�on del Oro Concepci�on del Oro 1028430 238410 2025 1961–2003

Chalchihuites Chalchihuites 1038530 228380 2260 1963–2003

El Platanito Valpara�ıso 1048030 238570 990 1963–2003

El Sauz Fresnillo 1038120 218460 2090 1963–2003

La Florida Valpara�ıso 1038360 238340 1870 1963–2003

La Villita Tepechitl�an 1038190 228560 1790 1963–2003

Jim�enez del Te�ul Jim�enez del Te�ul 1038470 228200 1900 1963–2003

Juan Aldama Juan Aldama 1038230 228170 1995 1963–2003

Juchipila Juchipila 1038060 238490 1270 1963–2003

Monte Escobedo Monte Escobedo 1038330 218460 2190 1963–2003

Nieves General Francisco R. Murgu�ıa 1038000 238170 1900 1963–2003

Ojocaliente Ojocaliente 1028160 218270 2050 1963–2003

Pinos Pinos 1018340 228280 2408 1963–2003

Sain Alto Sain Alto 1038140 228550 2030 1963–2003

Tecomate Jalpa 1038020 218150 1375 1963–2003

Trancoso Guadalupe 1028210 228380 2190 1963–2003

Tlaltenango Tlaltenango de S�anchez Rom�an 1038170 238330 1700 1963–2003

Villa de Cos Villa de Cos 1028200 218130 2050 1963–2003

Villa Garc�ıa Villa Garc�ıa 1018570 218120 2102 1963–2003

Villanueva Villanueva 1028530 228090 1920 1963–2003

Zacatecas Zacatecas 1028340 228360 2485 1963–2003

1Benoit is a registered trademark of TruSoft Int’l, Inc.
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(0 # H , 0.5). If H 5 0.5, then the subsequent data are

not intercorrelated, meaning that the future values of

the time series are not influenced by the present or past

values (Palomas 2002; Sakalauskien�e 2003); those series

are classified as unpredictable. This last case corre-

sponds to the white noise or the classic Brownian move-

ment. The two former cases describe fractional Brownian

movements.

The Hurst exponent H of a real-valued time series

fZ1,Z2,⋯,Zn,⋯g is defined as the exponent in the as-

ymptotic scaling relation

�
R(n)

S(n)

�
5CnH as n/‘ , (1)

where C is a constant, angular brackets denote expected

value, S(n) is the standard deviation of the first n data of

the series fZ1,Z2,⋯,Zng, and R(n) is their range:

R(n)5maxfZ1,Z2,⋯,Zng2minfZ1,Z2,⋯,Zng .

In the Benoit software, the Hurst exponent H can be

directly found using the definition in Eq. (1) (this is the

rescaled range technique and provides the estimate

HRorS);H can also be computed from the power spectrum

of the time series fZ1,Z2,⋯,Zn,⋯g (the spectral method

gives an estimate HS) or using wavelet techniques

(yielding an estimateHw). The last technique is themost

popular in fractal rainfall studies (Rehman and Siddiqi

2009), and we have also selected it for our research.

2) THE WAVELETS METHOD ESTIMATE OF THE

HURST EXPONENT (Hw)

The wavelets method is valid for self-affine traces,

where the variance is not constant as the window size

increases. If f(t) is a self-affine random process, t is a

position parameter (time or distance), a . 0 is a scale

(dilation) parameter, w(t) is a mother wavelet, and

wt,a(t
0)5 (1/

ffiffiffi
a

p
)w(t0 2 t)/a is its shifted, dilated, and

scaled version, then the continuous wavelet transform

of f(t) is defined as

FIG. 2. Spatial distribution of weather stations in the Zacatecas state.
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W(t, a)5
1ffiffiffi
a

p
ð‘
2‘

wt,a(t
0)f (t0) dt0 . (2)

If the time series f(t) is self-affine, the variance ofW(t, a)

will scale with the dilation parameter asymptotically as

V(a)5 hW2i2 hWi2 } ad . (3)

The exponent d is between 21 and 13, 21# d# 3. The

Hurst exponent is defined as

Hw 5

d1 1

2
if 21# d, 1 (FGN)

d2 1

2
if 1# d# 3 (FBM)

,

8>><
>>:

(4)

where FGN is fractal Gaussian noise and FBM is frac-

tional Brownian motion.

The numerical algorithm in Benoit, based on the

theoretical scaling law [Eq. (3)], considers n wavelet

transforms, each with its own different scaling co-

efficient ai. Let S1, S2, . . . , Sn be, in turn, the standard

deviations from zero for the wavelet transforms with the

respective scaling coefficients (ai, i 5 1, 2, . . . , n).

Define the ratios of standard deviationsG1,G2, . . . ,

Gn21 as

G15
S1
S2
, G2 5

S2
S3
,⋯,Gn215

Sn21

Sn
(5)

and take the average value of Gi as

Gavg5
1

n2 1
�
n21

i51

Gi . (6)

In the Benoit software, the Hurst exponent is calcu-

lated as

H5 f (Gavg) , (7)

where f is a heuristic function that has been found

to approximate well the Hurst exponent in the form

Hw 5 f (Gavg) for self-affine stochastic traces. The Benoit

package sets n5 4 and ai 5 2i for i5 0, 1, 2, 3. The

mother wavelet used is a step function.

As is well known (Carbone et al. 2004), the Hurst

exponent is linked with fractal dimension D as

TABLE 2. Basic statistics of rainfall time series for each weather station in the state of Zacatecas. Range is maximum minus minimum

daily value. Abbreviations: Y, years of information; M, average; SD, standard deviation; VC, variation coefficient; S, skewness; and

K, kurtosis.

Station County Y Range M SD VC S K

Agua Nueva Villa de Cos 34 52 0.96 3.87 4.03 6.30 49.74

Camacho Mazapil 31 62 0.74 3.28 4.41 6.99 65.55

Ca~nitas Ca~nitas de Felipe Pescador 27 68 0.97 4.04 4.17 6.75 59.57

Cedros Mazapil 30 90 0.92 3.71 4.03 7.09 80.65

Coapas Mazapil 39 92 1.40 4.72 3.38 5.53 44.67

Concepci�on del Oro Concepci�on del Oro 31 67 1.06 4.12 3.88 6.39 54.58

Chalchihuites Chalchihuites 29 83.1 1.23 4.39 3.57 6.41 58.70

El Platanito Valpara�ıso 40 108.5 1.61 5.63 3.50 5.81 47.13

El Sauz Fresnillo 40 67.2 1.15 4.23 3.68 5.94 46.57

La Florida Valpara�ıso 35 77 1.35 4.48 3.32 5.53 44.72

La Villita Tepechitl�an 36 80 1.15 4.83 4.20 6.70 60.44

Jim�enez del Te�ul Jim�enez del Te�ul 35 98 1.99 6.29 3.15 4.98 35.11

Juan Aldama Juan Aldama 41 85 1.60 5.26 3.29 5.19 36.26

Juchipila Juchipila 40 82.1 2.17 6.58 3.04 4.61 26.78

Monte Escobedo Monte Escobedo 38 70 1.97 5.86 2.98 4.56 26.56

Nieves General Francisco R. Murgu�ıa 39 83 1.02 4.32 4.25 7.28 74.42

Ojocaliente Ojocaliente 39 87 1.09 4.45 4.10 6.90 66.37

Pinos Pinos 31 80.7 1.14 4.87 4.27 6.85 61.38

Sain Alto Sain Alto 35 91 1.27 4.60 3.61 6.14 53.29

Tecomate Jalpa 32 76.5 1.82 5.70 3.14 4.76 29.13

Trancoso Guadalupe 38 69.5 1.22 4.73 3.89 6.24 50.12

Tlaltenango Tlaltenango de S�anchez Rom�an 37 77.5 1.91 5.92 3.10 4.71 28.78

Villa de Cos Villa de Cos 36 86 1.10 4.72 4.30 6.78 59.73

Villa Garc�ıa Villa Garc�ıa 39 82.1 1.21 4.97 4.13 6.86 63.40

Villanueva Villanueva 32 53.7 1.30 4.38 3.35 4.91 30.34

Zacatecas Zacatecas 39 75 1.34 5.00 3.72 5.83 43.95
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H5 22D . (8)

Rangarajan and Sant (2004) and Rehman and Siddiqi

(2009), who used this wavelet-based method to find

H(5Hw) for Indian and Saudi Arabian rainfall data,

respectively, defined the climate predictability index as

PI5 2jD2 1:5j5 2j0:52Hj . (9)

If PI is close to 0, they claim that the climate is un-

predictable; the closer it is to 1, the more predictable

it is.

c. Descriptive statistics

From the rainfall data, we also computed basic sta-

tistics (standard deviation, variance, and coefficient of

variation), the coefficient of asymmetry, and kurtosis as

complementary results in order to characterize rainfall

time series by means of descriptive statistics and to re-

late these statistics to fractal parameters.

3. Results and discussion

a. Basic statistics

Statistics for rainfall time series for all weather sta-

tions are shown in Table 2. Large differences in mini-

mum and maximum values were detected among the

sites, the extreme case being the station El Platanito,

where a precipitation event of 108.5mm was registered;

however, in the other weather stations, the range be-

tween minimum and maximum values was acceptable.

Standard deviation ranged between 3.28 and 6.58mm;

however, since average daily precipitation is too low

(between 0.74 and 2.17mmday21), the coefficient of

variation homogenizes the variation among stations.

The values of asymmetry indicated that most of the

rainfall data have positively skewed distribution. The

degree of peakedness (kurtosis) of rainfall distribution

was greater than three in all stations, which indicates

that all distributions are leptokurtic (Haan 1979).

b. Fractal analysis

Table 3 shows the value of the Hurst exponents [and

the predictability index; see Eq. (9)] for all stations.

Hurst exponents less than 0.5 were estimated for all

stations, with an average value of 0.10 and values rang-

ing from 0.02 to 0.30 with a high coefficient of variation

(72.6%). In general, the temporal pattern of the rainfall

series in Zacatecas shows antipersistent behavior, that

is, a negative dependence between long-separated

events. As reported fromVenezuela (Amaro et al. 2004)

and, very recently, from centralMexico (Valdez-Cepeda

et al. 2012), the degree of antipersistence in some cases

depends on the time scale: if the Hurst analysis were

done for monthly or annual time series, the Hurst expo-

nent would have possibly exceeded 0.5, indicating a ten-

dency for persistence. If H is scale dependent, this

implies multifractal behavior and would necessitate

multifractal wavelet analysis [in the spirit of Davis and

Wiscombe (1994)]. In an influential paper, Kalisky et al.

(2005) [see also Kalisky et al. (2007)] recommended

a so-called volatility test for a ‘‘quick look’’ decision on

whether a time series is fractal or multifractal. A careful

analysis of these papers [see, e.g., Eq. (13) in Kalisky

et al. (2007)] shows that the basic tenet behind the

proposed volatility analysis is the validity of the fol-

lowing assumption for four identically distributed ran-

dom variables [the so-called four-point theorem of

nonlinear signal processing (Bendat 1981) or Wick’s

(1950) theorem from quantum field theory]:

hABCDi5 hABihCDi1 hACihBDi1 hADihBCi ,
(10)

TABLE 3. Hurst exponent variability for the precipitation time

series in the state of Zacatecas.

Station County Hw PI5 j0:52Hwj
Agua Nueva Villa de Cos 0.04 0.92

Camacho Mazapil 0.02 0.96

Ca~nitas Ca~nitas de Felipe

Pescador

0.02 0.97

Cedros Mazapil 0.03 0.94

Coapas Mazapil 0.05 0.90

Concepci�on

del Oro

Concepci�on del Oro 0.10 0.80

Chalchihuites Chalchihuites 0.09 0.82

El Platanito Valpara�ıso 0.15 0.70

El Sauz Fresnillo 0.12 0.76

La Florida Valpara�ıso 0.21 0.58

La Villita Tepechitl�an 0.30 0.40

Jim�enez del Te�ul Jim�enez del Te�ul 0.11 0.78

Juan Aldama Juan Aldama 0.10 0.80

Juchipila Juchipila 0.22 0.56

Monte Escobedo Monte Escobedo 0.19 0.62

Nieves General Francisco

R. Murgu�ıa
0.08 0.84

Ojocaliente Ojocaliente 0.07 0.86

Pinos Pinos 0.05 0.90

Sain Alto Sain Alto 0.04 0.92

Tecomate Jalpa 0.25 0.50

Trancoso Guadalupe 0.12 0.76

Tlaltenango Tlaltenango de S�anchez

Rom�an

0.21 0.58

Villa de Cos Villa de Cos 0.02 0.96

Villa Garc�ıa Villa Garc�ıa 0.05 0.90

Villanueva Villanueva 0.10 0.80

Zacatecas Zacatecas 0.06 0.88
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where angular brackets are expectancies. Applying

Eq. (10) to the case A5B5C5D5X2 hXi, where
X is a random variable, we find that the kurtosis ofXmust

be 3, which is certainly not true for our Mexican rainfall

data, which are strongly leptokurtic! Even if the quick-

look volatility analysis is not necessarily applicable to our

leptokurtic data, the results of Amaro et al. (2004) and

Valdez-Cepeda et al. (2012) warn us of a real possibility of

multifractality, that is, of a possible time and duration

dependence of Hw. To check this, in future research the

rainfall data should be subjected to multifractal analysis.

As pointed out by a reviewer of an earlier version of the

paper, even in the case of shorter daily or weekly data

ranges, a careful comparison of the wavelet transforms

with increasing dilatation constants ai might give indica-

tion of the fine details of rainfall dynamics.

Within each rainfall time series, days without rain

may be influencing the value of the Hurst. Nevertheless,

within the rainy season in each station the midsummer

drought may be responsible for the antipersistent be-

havior of the series. This may be the case of the stations

north of the state, where the rainfall pattern shows

unimodal behavior, which is typical of Mexican mon-

soon. The midsummer drought may cause antipersistent

behavior of rainfall mainly in those years where this

phenomenon ismore evident. This applies to the weather

stations northward of Zacatecas, where, at annual scale,

a unimodal-type rainfall distribution is observed, which is

typical of the Mexican monsoon (Maga~na et al. 1999,

2003; Peralta-Hern�andez et al. 2008).

This antipersistent behavior within time series should

be incorporated in modeling processes in Zacatecas

when a climate generator will be used, given that at daily

scales, the structural patterns of rainfall time series are

different between northern and southern regions in the

state. Spatial variability of persistence measured by the

Hurst exponent and extracted from each rainfall series is

shown in Fig. 3.

As a validation of these results, two different weather

stations were considered: Parras in the state of Coahuila

in the northern part of Mexico and El Tule, Arandas,

in the state of Jalisco in the central part of Mexico.

The temporal variations of the time series (including

365 days) of daily precipitation for both weather sta-

tions are presented in Fig. 4. The Hurst exponents for

the two stations were 0.079 and 0.262, respectively.

For arid lands, the main characteristic is the occur-

rence of individual storms when the time series shows

high variability (Hw 5 0.079); this type of behavior in

time series is caused by the differences in daily pre-

cipitation among events. These results are similar to

those of Wall�en (1955) and Mosi~no and Garc�ıa (1966),

FIG. 3. Spatial variability of the wavelet Hurst exponent Hw for the rainfall time series in the

state of Zacatecas.
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who also obtained high coefficients of variation for

arid regions.

The main advantage of using Hurst exponents rather

than the coefficient of variation is that the former is

a numerical representation of the randomness through

the history of a process that is a dynamical characteristic,

while the latter is a statistic that is independent of the

temporal evolution.

Time series with more rainfall events and more si-

militude among them presented a higher Hurst expo-

nent (Hw5 0.262). This means that time series like at El

Tule site have a higher potential to predict a pattern or

behavior of daily rainfall than at the Parras site.

c. Relationship between the Hurst exponent and
geographical parameters

Temporal behavior of rainfall time series may be re-

gionalized in space in order to study its relation with

geographical and physiographical variables (Kyriakidis

et al. 2004; Miranda et al. 2004). It might be expected

that the effect of altitude on the dynamics of rainfall se-

ries is especially strong. Actually, the results showed that

there is no relationship between annual rainfall average

and altitude (r 5 0.12), and the Hurst exponent of the

time series is alsoweakly influenced by altitude (r5 0.03).

The spatial variability of the Hurst exponent of rain-

fall time series has been documented in this research

mostly based on western longitude coordinates of the

weather stations (Fig. 5). An inverse correlation be-

tween persistence (in space and time) and latitude has

been reported for rainfall (Miranda et al. 2004); how-

ever, this has been documented for tropical conditions

only, which are very different from the environments

studied in this research. It should be noted that for

semiarid to arid conditions that prevail in the state of

Zacatecas, the ‘‘statistical roughness’’ of rainfall series (as

measured by the Hurst exponent) is higher in northern

areas as long as the western longitude degrees decrease

(r5 0.57), as shownFig. 5. In this case, the antipersistence

FIG. 4. Daily precipitation time series for (top) Parras and (bottom) El Tule stations.

FIG. 5. Effect of geographical (longitude) location on rainfall time

series Hurst exponents in the state of Zacatecas.

2778 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



that is present in rainfall series seems to be associated

with the magnitude of rainfall events and their temporal

distribution and not with the frequency of the rainfall.

Less roughness of rainfall data is observed in the

southwestern region. This behavior is typical in sites

with larger yearly rainfall volume and is influenced at

a mega scale by topography. This is shown in Fig. 6,

where the relationship between annual rainfall and

Hurst exponent is evident (r 5 0.86).

Another important parameter that determines the

structural pattern in rainfall time series is the number of

rainy days. In this research we found a strong correlation

(r 5 0.82) between the number of rainy days and the

Hurst exponent (Fig. 7). Both relationships (in Figs. 6, 7)

have positive slope, indicating higher Hurst exponents

at sites with higher average precipitation values.

We find Figs. 6 and 7 very difficult to explain, as the

Hurst exponents Hw had been determined from daily

time series, which have (apparently) nothing to do with

the number of rainy days in a year or total precipitation

in a year. Still, the correlations are convincing, and

it remains a challenging research task to construct a

(multi?) fractal model to satisfactorily explain this em-

pirical finding.

4. Conclusions

Results obtained in this research have shown that all

daily rainfall time series studied have antipersistent

behavior. The Hurst exponent extracted from rainfall

time series is a useful numerical measure that can be

used to explain the spatial behavior of the randomness

of rainfall in contrasting climatic environments.

In modeling studies of soil erosion processes, it is

necessary to consider the gradients of the spatial changes

in the Hurst exponent of the daily rainfall time series

across the Zacatecas state. Hurst exponents may also be

useful for determining the impact of climate change on

local precipitation records. Exponents extracted from

recent data (e.g., the last 20 yr) may be compared to

those from longer periods (e.g., 50 yr or more) to deter-

mine the impact of long-range climatic variations.

We assumed that the studied rainfall time series are

monofractal, though there are indications (Amaro et al.

2004; Valdez-Cepeda et al. 2012) that this might not be

always true. Further research is needed to check the pos-

sible multifractality of rainfall data, and, if needed, extract

their Hurst exponents with multifractal techniques.
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