

Reporte agrometeorológico Octubre de 2015

Guillermo MEDINA GARCÍA

CENTRO DE INVESTIGACIÓN REGIONAL NORTE CENTRO CAMPO EXPERIMENTAL ZACATECAS

Calera de V. R., Zacatecas Folleto informativo No. 145 No está permitida la reproducción total o parcial de esta publicación, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, fotocopia, por registro u otros métodos, sin el permiso previo y por escrito dela Institución. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Progreso No. 5, Barrio de Santa Catarina Delegación Coyoacán 04010 México, D.F. Tel. (55) 3871-8700 Primera edición. 2015

Impreso en Méxic0o

Reporte agrometeorológico Octubre de 2015

Guillermo MEDINA GARCÍA¹

¹Dr. Investigador responsable de la Red de Monitoreo agroclimático del estado de Zacatecas. Campo Experimental Zacatecas. INIFAP.

Contenido

ANTECEDENTES	1
RED DE MONITOREO AGROCLIMÁTICO	2
RESUMEN MENSUAL DE VARIABLES METEOROLÓGICAS	4
AGRICULTURA Y CLIMA	5
Precipitación	5
ndice de humedad	13
Balance hídrico	15
PRECIPITACIÓN HISTÓRICA EN EL MES DE OCTUBRE DE 2015	18
RESUMEN MENSUAL	20
_ITERATURA CITADA	25

Antecedentes

La agricultura es una actividad estrechamente relacionada con clima. La cantidad de Iluvia, la humedad almacenada en el suelo, la ocurrencia de una helada o de granizo, constituyen algunos de los componentes del clima que año con año repercuten en la producción de cosechas. La presencia de plagas y enfermedades, la eficiencia en la absorción de nutrientes, la demanda de agua por las plantas y la duración de los ciclos vegetativos, dependen también en gran medida de las condiciones del clima (FAO, 1981; Critchfield, 1983; Silva y Hess, 2001).

En el estado de Zacatecas la mayor parte de la agricultura se realiza en condiciones de temporal (INEGI, 2006), la cual se caracteriza por alta frecuencia de sequías, ocurrencia de heladas tempranas, lluvias torrenciales y mal distribuidas, y en general pueden presentarse heladas tardías y vientos de gran intensidad.

Con el propósito de tener un conocimiento de las condiciones del

clima en relación con el desarrollo de los cultivos y su manejo, el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) implementó en el año 2002 el proyecto "Red de monitoreo agroclimático del estado de Zacatecas", financiado por la Fundación Produce Zacatecas, A. C.

La "Red de monitoreo agroclimático" es una herramienta de apoyo a la toma de decisiones de las dependencias estatales y federales involucradas en el desarrollo agropecuario del Estado, así como para los agricultores y ganaderos.

Como parte de la estrategia para la divulgación de la información registrada por la red de estaciones, se presenta la publicación de un reporte agrometeorológico mensual, a través del cual se da a conocer información de las condiciones ambientales prevalecientes durante cada mes, relacionada con el desarrollo de los cultivos comparada con las condiciones climáticas normales.

Red de monitoreo agroclimático del estado de Zacatecas

La red cuenta con 36 estaciones climáticas automáticas (Cuadro 1) distribuidas (Figura 1) en el Estado, cubriendo diferentes ambientes. Cada estación está equipada medir la temperatura del aire, humedad relativa, precipitación, dirección y velocidad del viento, radiación solar y humedad de la hoja. La medición de las condiciones del estado del tiempo se realiza cada 15 minutos y los datos son transmitidos por las estaciones a la base central que se encuentra ubicada en el Campo Experimental Zacatecas (Medina et al., 2007). La información de las estaciones puede ser consultada en tiempo real en Internet en el sitio:

www.zacatecas.inifap.gob.mx

en donde se pueden consultar los datos en forma numérica y en forma gráfica. Se presentan también índices agroclimáticos como horas frío, horas de heladas y evapotranspiración. La información está disponible para los productores, dependencias relacionadas con el Sector Agropecuario y para el público en general.

CUADRO 1. ESTACIONES DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

ESTACIÓN	MUNICIPIO
Campo Exp. Zacatecas	Calera
Cañitas	Cañitas Felipe P.
Mesa de Fuentes	Enrique E.
Mogotes	F. R. Murguía
Ábrego	Fresnillo
Col. Emancipación	Fresnillo
El Pardillo 3	Fresnillo
Rancho Grande	Fresnillo
U.A. Biología	Guadalupe
Santo Domingo	Jalpa
Santa Rita	Jerez
Santa Fe	Jerez
Loreto	Loreto
Marianita	Mazapil
Tanque de Hacheros	Mazapil
Campo Uno	Miguel Auza
Momax	Momax
El Alpino	Ojocaliente
El Saladillo	Pánfilo Natera
La Victoria	Pinos
Col. Progreso	Río Grande
Col. González Ortega	Sombrerete
Col. Hidalgo	Sombrerete
Emiliano Zapata	Sombrerete
Providencia	Sombrerete
Tierra Blanca	Tabasco
Tepechitlán	Tepechitlán
Las Arcinas	Trancoso
CBTA Valparaíso	Valparaíso
Agua Nueva	Villa de Cos
Chaparrosa	Villa de Cos
COBAEZ Villa de Cos	Villa de Cos
Sierra Vieja	Villa de Cos
Estancia de Ánimas	Villa G.Ortega
Villanueva	Villanueva
U.A. Agronomía	Zacatecas

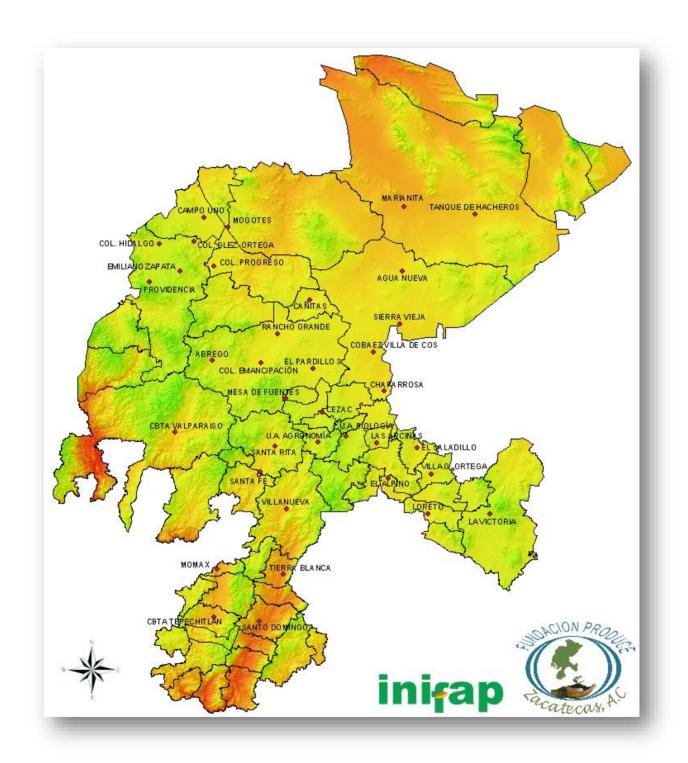


FIGURA 1. RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

Resumen de variables meteorológicas

Mes de Octubre

TEMPERATURA

	Ĵ	Estación
Promedio	16.6	
Máxima promedio	24.5	
Máxima extrema	33.3	Santo Domingo
Mínima promedio	9.8	
Mínima extrema	2.1	Col. Hidalgo
Promedio histórico*	16.8	

PRECIPITACIÓN

	mm	Estación
Promedio mensual	97.7	
Mínima	59.0	Col. González Ortega
Máxima	156.6	U. A. Agronomía
Promedio decena uno	21.4	
Mínima	2.7	La Victoria
Máxima	52.4	U. A. Biología
Promedio decena dos	0.8	
Mínima	0.0	Varias
Máxima	4.4	Santa Fe
Promedio decena tres	75.5	
Mínima	38.6	Campo Uno
Máxima	116.8	U. A. Agronomía
Promedio mensual histórico*	35.5	

HUMEDAD RELATIVA

	%	Estación
Promedio	71.5	
Máxima promedio	95.6	
Máxima extrema	100.0	Varias
Mínima promedio	39.8	
Mínima extrema	14.0	Varias
Promedio histórico**	62.7	

VIENTO

	Km/hr	Estación
Promedio	5.7	
Máxima promedio	14.7	
Máxima extrema	41.5	Rancho Grande
Dirección dominante	SSE	
Máxima promedio histórica**	13.5	

En la obtención de los valores de este resumen se consideran las 36 estaciones de la red.

^{*}Fuente: CNA. Datos históricos 1961-2003.

^{**}Fuente: Red de monitoreo agroclimático 2002-2014.

Agricultura y clima

Precipitación

La agricultura que se practica bajo condiciones de temporal tiene como principal limitante la precipitación pluvial, tanto en cantidad como en distribución (Villalpando, 1985), es por esto que en los meses de la temporada de lluvia (verano) se le dará mayor énfasis a esta variable.

En la primera decena del mes se registraron 21.4 mm en promedio, alcanzando valores desde 2.7 mm en la estación La Victoria, Pinos, hasta 52.4 mm en la estación U. A. Biología, Guadalupe, (Figura 2). En esta decena se presentaron lluvias muy variables, menores a lo normal en la región de Los Cañones, en el municipio de Pinos y en algunos puntos del centro del Estado, en el resto se presentaron lluvias iguales o mayores a lo normal (Figura 3).

En la segunda decena del mes de octubre prácticamente no se registró precipitación en el Estado, se registró en promedio 0.8 mm, alcanzando

valores desde 0.0 mm en muchas estaciones, hasta 4.4 mm en la estación Santa Fe, Jerez (Figura 4). Las lluvias ocurridas representan lluvias inferiores a lo normal hasta de 100% prácticamente en todo el Estado (Figura 5).

En la tercera decena del mes de octubre se incrementaron las lluvias, registrándose desde 38.6 mm en la estación Campo Uno, Miguel Auza, hasta 116.8 mm en la estación U. A. Agronomía, Zacatecas (Figura 6). Respecto al porcentaje de lluvia en comparación con el promedio histórico, en todo el Estado llovió 100% más que el promedio (Figura 7).

Considerando las Iluvias acumuladas durante el mes, se presentaron precipitaciones entre 59.0 y 156.6 mm, siendo 97.7 mm el promedio de todas las estaciones (Figura 8). La Iluvia en comparación con el promedio histórico, prácticamente en todo el Estado fue mayor al promedio hasta en el 100% (Figura 9).

En resumen, tomando en cuenta la Iluvia registrada en todas las estaciones de la Red, en promedio se registró 21.4 mm en la primera decena, 0.8 mm en la segunda y 75.5 mm en la tercera, contra el promedio de las mismas decenas que son de 7.0, 6.0 y 3.0 mm, lo cual indica que en la primera y tercera decenas del mes de octubre llovió más de lo normal y en la segunda menos de lo normal.

La precipitación acumulada durante los meses de junio a octubre oscila entre 314.3 mm en la estación Marianita, Mazapil y 739.4 mm en la estación Momax, Momax, aunque en la mayor parte del Estado ha oscilado entre 400 y 600 mm (Figura 10).

Considerando la cantidad de Iluvia ocurrida en estos cinco meses como porcentaje con respecto a la Iluvia promedio, en la mayor parte del Estado las Iluvias han sido superiores al promedio, excepto en la región de Los Cañones, donde la cantidad de Iluvia ha sido igual al promedio (Figura 11).

En la Figura 12 se presentan a manera de ejemplo dos gráficas de una estación, con la lluvia decenal y la lluvia acumulada de lo que va del año. El resto de las gráficas de las estaciones pueden ser consultadas en el sitio de Internet del Campo Experimental Zacatecas

www.zacatecas.inifap.gob.mx

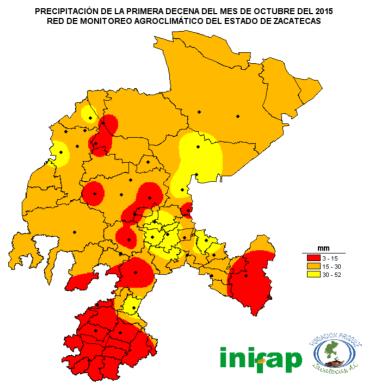


FIGURA 2. Precipitación de la primera decena de octubre del 2015.

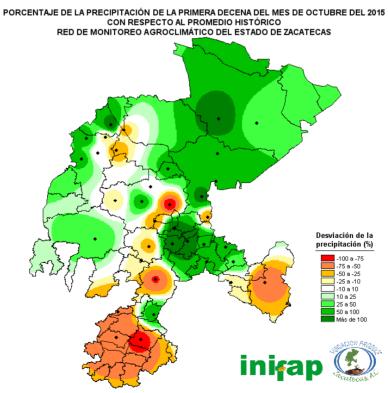


FIGURA 3. Porcentaje de la precipitación ocurrida en la primera decena del mes de octubre del 2015 con respecto al promedio histórico.

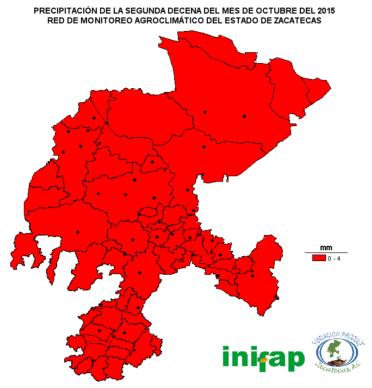


FIGURA 4. Precipitación de la segunda decena de octubre del 2015.

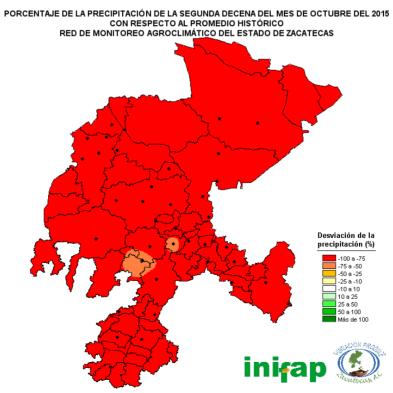


FIGURA 5. Porcentaje de la precipitación ocurrida en la segunda decena del mes de octubre del 2015 con respecto al promedio histórico.

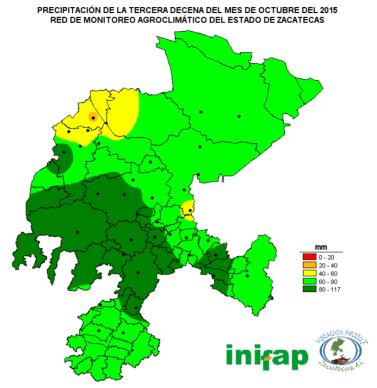


FIGURA 6. Precipitación de la tercera decena de octubre del 2015.

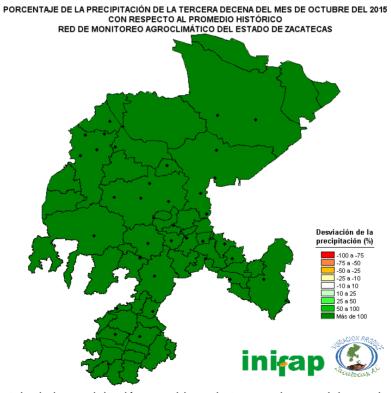


FIGURA 7. Porcentaje de la precipitación ocurrida en la tercera decena del mes de octubre del 2015 con respecto al promedio histórico.

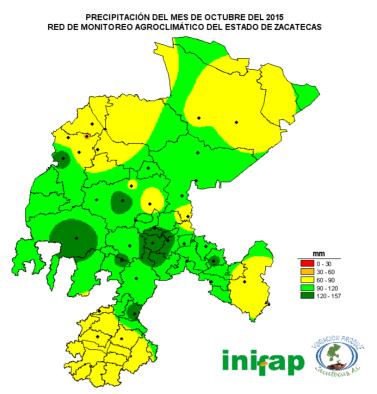


FIGURA 8. Precipitación del mes de octubre del 2015.

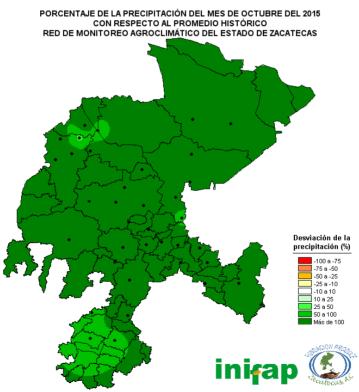


FIGURA 9. Porcentaje de la precipitación ocurrida en el mes de octubre del 2015 con respecto al promedio histórico.

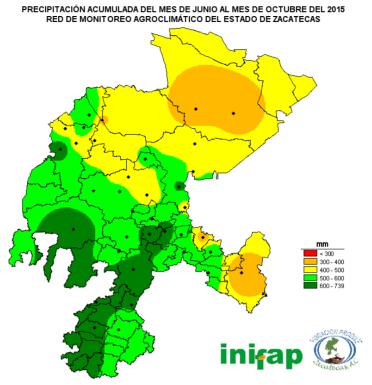
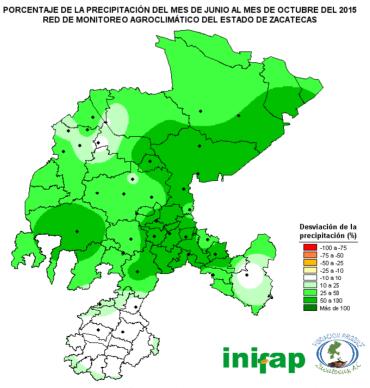
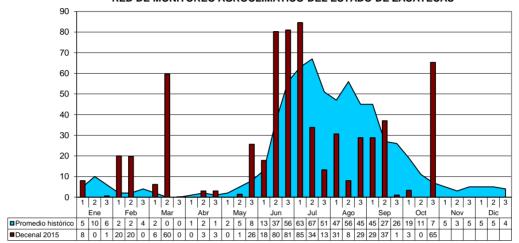


FIGURA 10. Precipitación acumulada en los meses de junio a octubre del 2014.




FIGURA 11. Porcentaje de la precipitación ocurrida en los meses de junio a octubre del 2014 con respecto al promedio histórico.

inifap

PRECIPITACION DECENAL DE LA ESTACION SANTO DOMINGO, JALPA RED DE MONITOREO AGROCLIMATICO DEL ESTADO DE ZACATECAS

inifap

PRECIPITACION DECENAL ACUMULADA DE LA ESTACION SANTO DOMINGO, JALPA RED DE MONITOREO AGROCLIMATICO DEL ESTADO DE ZACATECAS

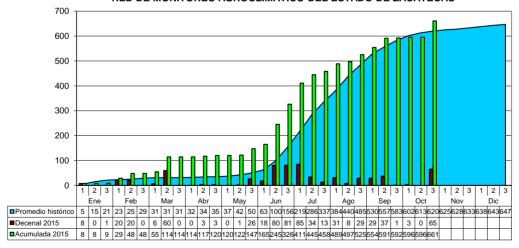


FIGURA 12. Precipitación decenal y acumulada hasta el mes de octubre en la estación Santo Domingo, Jalpa.

ÍNDICE DE HUMEDAD

En la agricultura de temporal, los procesos de crecimiento y desarrollo de las plantas tienen como uno de los principales factores limitantes a la disponibilidad de humedad en el suelo, donde la fuente de abastecimiento de agua es la lluvia. Debido a la variabilidad que tiene la lluvia en tiempo y espacio, no es el indicador más adecuado (Flores y Ruiz, 1998).

Sin embargo, existen diversos parámetros o índices que indican cómo ha sido la humedad disponible en cierto período de tiempo en relación con las especies vegetales. Uno de estos parámetros es el índice de humedad (Villalpando y Ruiz, 1993), el cual está dado por la expresión:

$$IH = \frac{P}{ETo}$$

Donde:

IH = Índice de humedad

P = Precipitación

ETo = Evapotranspiración potencial

La P y la ETo corresponden al mismo período del cual se quiere obtener el IH; de estas dos variables la primera es registrada directamente en el pluviómetro de las estaciones y la segunda es estimada por el programa Addvantage Ver. 6.1 que controla las estaciones y es estimada por el método de Penman-Monteith (Adcon, 2000).

La evapotranspiración potencial es el agua evaporada desde el suelo y el agua transpirada por las plantas (Ortiz, 1987). La ETo es la máxima cantidad de agua capaz de ser perdida por una capa continua de vegetación que cubra todo el terreno, cuando es ilimitada la cantidad de agua suministrada.

El índice de humedad es un indicador de la cantidad de agua que se pierde por la ETo y la cantidad de agua que es recuperada por la lluvia. Los datos de estas dos variables utilizadas provienen de las mediciones de la "Red de Estaciones Agroclimáticas del estado de Zacatecas".

Durante el mes de octubre se presentaron precipitaciones mayores a lo normal en gran parte del Estado, excepto en algunas regiones puntuales como es El Cañón de Juchipila y la zona frijolera donde fueron menores al promedio. En la Figura 11 se presenta el mapa del índice de humedad del mes de

octubre. De acuerdo con la figura, el índice de humedad resultó adecuado en la mayor parte del Estado. Lo anterior indica que los cultivos que aun necesitaban humedad, tuvieron la suficiente, pero los que ya no necesitaban, pudieron tener daños por exceso de humedad.

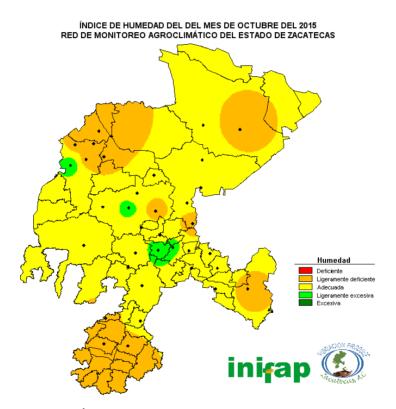


FIGURA 11. Índice de humedad del mes de octubre del 2015.

BALANCE HÍDRICO

No toda el agua de lluvia que cae sobre la superficie del suelo puede realmente ser utilizada por las plantas. Parte del agua de lluvia se infiltra a través de la superficie y parte fluye sobre el suelo en forma de escorrentía superficial. Cuando la lluvia cesa, parte del agua que se encuentra en la superficie del suelo se evapora directamente a la atmósfera, mientras que el resto se infiltra lentamente a horizontes inferiores del suelo. Del total del agua que se infiltra, parte percola por debajo de la zona de mientras raíces. que el resto permanece almacenada en dicha zona y podría ser utilizada por las plantas (Veenhuizen, 2000).

La capacidad de campo es la máxima capacidad de retención de humedad por el suelo. El punto de marchitez es el grado de humedad en el suelo, cuando las plantas no pueden absorber más agua. El agua utilizable por las plantas es la diferencia entre los dos anteriores. (Sánchez, 2005).

La porción de agua almacenada en la zona de raíces se le denomina precipitación efectiva o capacidad de almacenamiento de agua en el suelo. En otras palabras, es la fracción de lluvia que estará realmente disponible para satisfacer, al menos parte de las necesidades de agua de las plantas. Para determinar cuál es la capacidad de almacenamiento de agua en el suelo se utiliza una ecuación que considera la capacidad de campo, el punto de marchitez permanente, la densidad aparente y la profundidad del suelo (Israelsen y Hansen, 1965; Withers y Vipond, 1982).

Por otra parte se determinan los requerimientos de agua (Palacios y García, 1989) de los cultivos (ETc) y posteriormente se realiza un balance hídrico (BH) que es la diferencia entre el agua que ha recibido el cultivo y el aqua perdida por éste y el suelo. El método consiste en hacer un BH acumulativo registrado decenalmente la estación а largo de crecimiento de un cultivo dado (Frere y Popov, 1980; Rice et al., 1986).

Para cuantificar el déficit y el exceso de humedad que puede ocurrir durante el ciclo del cultivo, se calcula un índice de satisfacción de la demanda hídrica (ISDH), el cual señala en porcentaje el grado con que se satisfacen las necesidades hídricas del cultivo. El valor final de este índice indicará si la demanda hídrica del cultivo fue satisfecha por la precipitación y en qué porcentaje.

Debido a la importancia del frijol, el balance hídrico de este cultivo será calculado conforme avance el ciclo, de tal manera que se pueda ubicar espacialmente donde ha ocurrido déficit o exceso de humedad.

En el Cuadro 3 se presenta el balance hídrico de frijol de temporal considerando una fecha de siembra del 21 de julio. Las lluvias del mes de octubre fueron mayores a lo normal en la primera y tercera decenas y menores en la segunda.

La humedad en el suelo en la primera decena en promedio fue de 82%, pero en la segunda disminuyó en promedio hasta 36% y en 11 estaciones llegó a menos del 10%. en la tercera decena lloví en abundancia y la humedad del suelo se recuperó hasta el 100% el índice de satisfacción de la humedad.

Al final del ciclo del cultivo, la humedad del suelo en promedio fue del 72%, pero hubo periodos del ciclo donde la humedad disminuyó mucho, como fue en la tercera decena de agosto, la primera de septiembre y la segunda de octubre, aunque esta última ya no afectó tanto al cultivo.

CUADRO 3. PORCENTAJE DE SATISFACCIÓN DE LA DEMANDA HÍDRICA DE FRIJOL DE TEMPORAL CONSIDERANDO UNA FECHA DE SIEMBRA DEL 21 DE JULIO DEL 2015.

	TEMPORAL CONSIDERANDO C		Julio		Agosto			Septiembre			Octubre			
		(Decena		as)	(D	ecena	ıs)	(D	ecena	as)	(D	ecena	as)	
DDR	ESTACIÓN	1	2	3	1	2	3	1	2	3	1	2	3	PROM.
	ÁBREGO			100	100	73	12	17	100	90	59	5	100	66
FRE	CAÑITAS			100	68	40	13	25	100	100	73	0	100	62
ES	COL. EMANCIPACIÓN			100	100	42	45	33	100	100	51	2	100	67
	EL PARDILLO 3			45	39	78	78	81	100	100	100	58	100	78
SNILLO	RANCHO GRANDE			100	98	20	24	27	100	99	100	76	100	74
	PROMEDIO			89	81	51	34	37	100	98	76	28	100	69
O	EL GRAN CHAPARRAL			97	45	76	37	26	100	96	100	27	100	70
Ď	EL SALADILLO			85	51	93	3	1	100	46	100	43	100	62
CA	ESTANCIA DE ÁNIMAS			100	100	100	27	10	100	100	100	29	100	77
│	LA VICTORIA			100	70	100	25	77	88	0	16	6	100	58
OJOCALIENT	LORETO			100	100	68	3	7	100	96	70	0	100	64
mi	PROMEDIO			96	73	87	19	24	98	68	77	21	100	66
	CAMPO UNO			100	100	100	46	6	100	61	100	77	100	79
70	COL. GLEZ. ORTEGA			100	100	100	70	2	100	98	78	0	100	75
RIO	COL. HIDALGO			100	100	100	24	50	100	37	100	30	100	74
တ္	COL. PROGRESO			94	27	18	48	62	100	50	51	2	100	55
GRANDE	EMILIANO ZAPATA			100	100	100	63	11	100	100	100	6	100	78
Ē	MOGOTES			100	100	37	27	6	71	8	47	1	100	50
'''	PROVIDENCIA			100	100	100	52	11	100	100	100	74	100	84
	PROMEDIO			99	90	79	47	21	96	65	82	27	100	71
	AGUA NUEVA			100	100	86	23	0	100	46	100	59	100	71
	CEZAC			100	100	100	49	32	100	79	100	78	100	84
N	CHAPARROSA			100	88	11	29	22	100	80	45	0	100	58
ZACATE	COBAEZ			100	28	30	85	4	100	100	100	100	100	75
Ä	LAS ARCINAS			100	100	100	87	42	100	100	100	21	100	85
EC.	MESA DE FUENTES			100	100	69	20	27	100	100	56	0	100	67
CAS	SIERRA VIEJA			72	100	30	27	6	100	100	100	76	100	71
	U.A. AGRONOMÍA			100	85	91	7	100	100	100	100	63	100	85
	U.A. BIOLOGÍA			100	86	100	48	87	100	100	100	100	100	92
	PROMEDIO			97	87	69	42	36	100	89	89	55	100	76
	PROMEDIO GENERAL			96	84	72	37	30	98	80	82	36	100	72

PRECIPITACIÓN HISTÓRICA EN EL MES DE OCTUBRE DE 2015

La Red de Monitoreo Agroclimático del estado de Zacatecas inició en el año 2002, a la fecha, las primeras estaciones instaladas cuentan con 14 años de datos. En estos 14 años, el mes de octubre de 2015 registró la mayor precipitación promedio en el Estado, tal como se muestra en la Figura 13. El promedio de lluvia registrada en las 36 estaciones fue 97.7 mm.

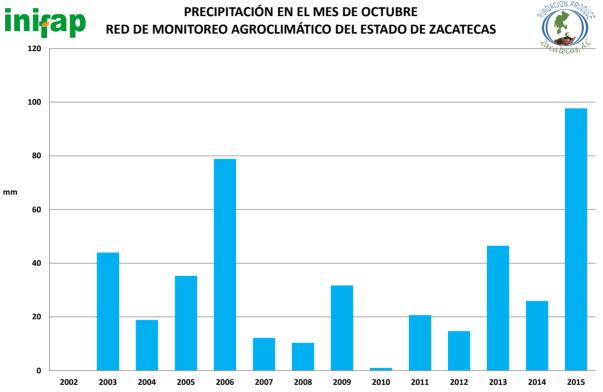
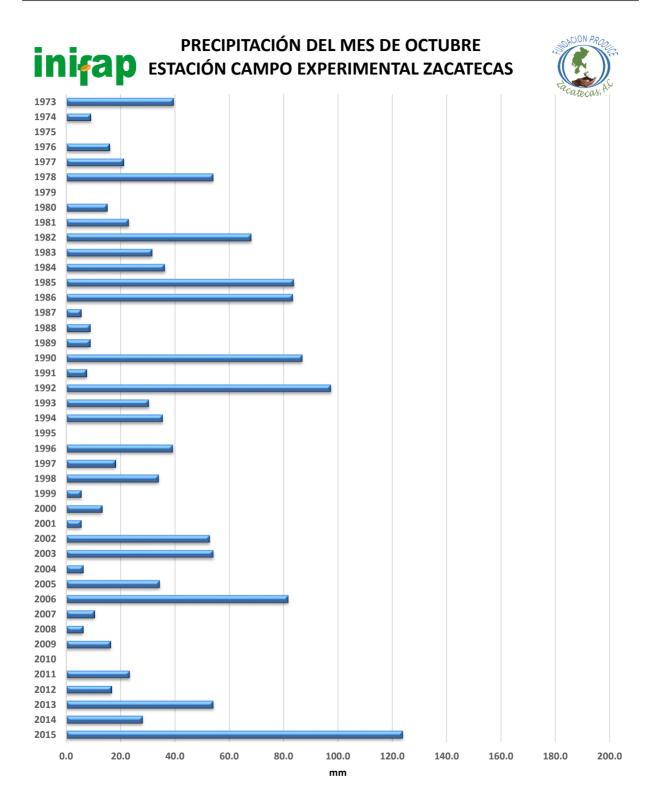



FIGURA 13. PRECIPITACIÓN PROMEDIO DEL MES DE OCTUBRE, CONSIDERANDO LAS 36 ESTACIONES DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

Catorce años de datos de precipitación son pocos para afirmar que la lluvia del mes de octubre de 2015 ha sido la mayor, sin embargo, si se toma como ejemplo la estación manual del Campo Experimental Zacatecas, la cual tiene 43 años de registros, también el mes de octubre del presente año ha sido el de mayor precipitación en los 43 años de la serie de datos, tal como se muestra en la figura siguiente.

Resumen mensual

CUADRO 5. ESTADÍSTICAS BÁSICAS MENSUALES DE TEMPERATURA DEL AÑO 2015 DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

		TEMPERATURA (°C)										
MES	VALOR MÁXIMO	ESTACIÓN	VALOR MÍNIMO	ESTACIÓN	MEDIA* MÁXIMA	MEDIA* MÍNIMA	MEDIA*					
Enero	30.0	Santo Domingo	-4.4	El Pardillo 3	20.6	4.9	12.2					
Febrero	33.9	Santo Domingo	-4.0	Abrego	21.6	4.8	13.0					
Marzo	31.5	Santo Domingo	-0.4	Abrego	21.6	6.7	13.9					
Abril	34.0	Santo Domingo	1.9	Abrego	26.3	9.7	18.0					
Mayo	36.1	Santo Domingo	1.9	Santa Fe	28.8	11.2	20.1					
Junio	35.0	Marianita	6.6	Abrego	26.7	13.7	19.4					
Julio	33.6	Marianita	5.4	El Pardillo 3 Arcinas	26.1	12.5	18.7					
Agosto	34.1	Marianita	6.1	Abrego	27.4	12.3	19.2					
Septiembre	33.8	Marianita	3.7	Abrego	26.5	12.0	18.5					
Octubre	33.3	Santo Domingo	2.1	Col. Hidalgo	24.5	9.8	16.6					
Noviembre		_										
Diciembre		_										

^{*}Promedios considerando todas las estaciones de la red.

inifap

TEMPERATURAS PROMEDIO EN EL MES DE OCTUBRE RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS

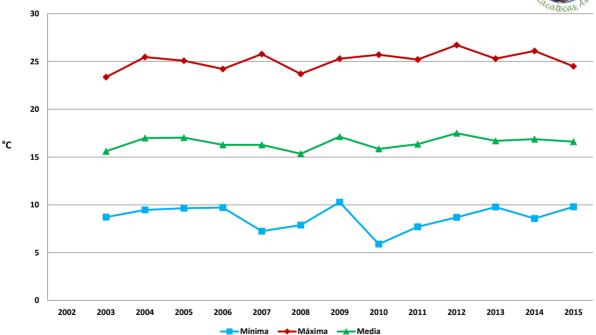


FIGURA 9. TEMPERATURAS PROMEDIO EN EL MES DE OCTUBRE, CONSIDERANDO LAS 36 ESTACIONES DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

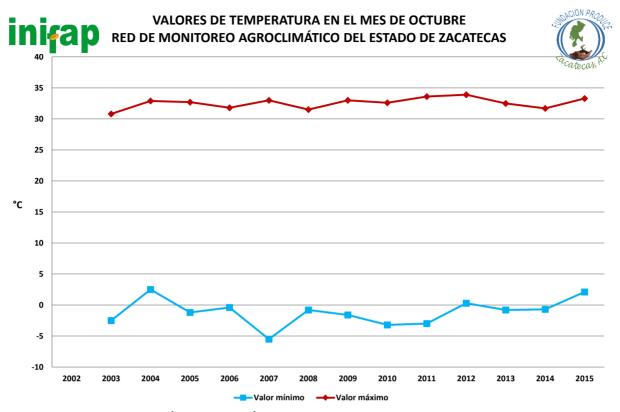


FIGURA 10. VALORES MÁXIMOS Y MÍNIMOS DE TEMPERATURA EN EL MES DE OCTUBRE, CONSIDERANDO LAS 36 ESTACIONES DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

CUADRO 6. ESTADÍSTICAS BÁSICAS MENSUALES DE HUMEDAD RELATIVA Y VIENTO DEL AÑO 2015 DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

	HUMED	AD RELAT	IVA (%)		VELOCIDAD DEL VIENTO (km/hr)							VELOCIDAD DEL VIENTO (km/hr)			
MES	MEDIA* MÁXIMA	MEDIA* MÍNIMA	MEDIA*	VALOR MÁXIMO	ESTACIÓN	MEDIA* MÁXIMA	MEDIA*	VIENTO DIRECCIÓN DOMINANTE*							
Enero	85.8	28.8	57.8	54.5	Rancho Grande	16.5	6.6	S							
Febrero	86.3	27.6	56.4	51.1	Mogotes	15.4	6.4	S							
Marzo	87.9	32.0	60.7	46.1	Emiliano Zapata	18.1	7.3	S							
Abril	80.1	22.2	48.5	54.0	Emiliano Zapata	18.9	7.4	SSO							
Mayo	80.4	18.6	45.9	47.2	La Victoria	18.0	7.1	SSO							
Junio	93.1	38.9	69.1	38.7	Col. Progreso	17.3	6.0	SSE							
Julio	95.2	40.2	71.5	44.9	Campo Uno	15.7	5.2	SSE							
Agosto	94.0	32.8	66.3	41.9	Santa Fe	16.0	5.3	SE							
Septiembre	95.7	38.0	71.0	29.9	CBTA Valparaíso	13.6	4.7	SSE							
Octubre	95.6	39.8	71.5	41.5	Rancho Grande	14.7	5.7	SSE							
Noviembre															
Diciembre															

^{*}Promedios considerando todas las estaciones de la red.

VALORES MÁXIMOS DE VELOCIDAD DEL VIENTO EN EL MES DE OCTUBRE RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS

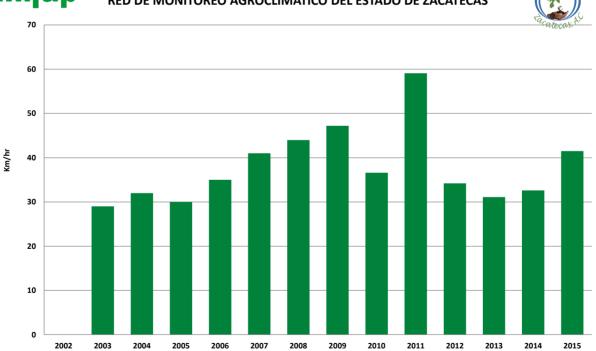


FIGURA 11. VALOR MÁXIMO DE VELOCIDAD DEL VIENTO EN EL MES DE OCTUBRE, CONSIDERANDO LAS 36 ESTACIONES DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

CUADRO 6. PRECIPITACIÓN MENSUAL Y ACUMULADA DEL AÑO 2015 DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

MONITOREO AGROC	PRECIPITACIÓN (mm)												
ESTACIÓN	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ANUAL
Ábrego	31.4	68.4	68.6	5.4	6.0	211.8	110.2	37.2	74.4	99.2			712.6
Agua Nueva	9.8	63.2	48.6	10.4	24.6	157.0	101.4	44.8	46.0	111.8			617.6
C. Exp. Zacatecas	9.0	35.5	89.9	12.7	32.5	182.4	86.9	65.6	75.3	119.8			709.6
Campo Uno	19.5	67.2	48.2	18.3	21.0	287.8	74.8	72.2	54.7	76.3			740.0
Cañitas	12.8	45.6	78.6	10.2	2.4	202.4	79.8	28.8	104.4	90.8			655.8
CBTATepechitlán	12.2	27.2	74.6	10.4	4.0	176.2	150.4	190.0	87.4	67.2			792.2
CBTA Valparaíso	12.8	91.4	81.4	0.6	2.8	177.8	161.0	90.6	103.6	132.2			854.2
Chaparrosa	7.4	30.6	80.8	13.6	39.1	233.4	93.5	32.0	70.5	63.9			664.8
COBAEZ	9.2	39.4	80.4	20.0	33.0	270.4	51.4	61.2	113.4	108.6			787.0
Col. Emancipación	14.6	60.6	67.0	3.8	8.4	117.8	90.0	54.2	117.4	139.4			673.2
Col. Glz. Ortega	28.4	79.0	63.2	8.6	10.4	186.6	145.0	75.4	69.8	59.0			725.4
Col. Hidalgo	29.8	70.8	51.3	6.3	31.4	190.1	85.9	49.6	68.9	73.6			657.7
Col. Progreso	35.9	71.4	52.0	24.8	14.8	169.6	51.0	41.9	84.7	77.5			623.6
El Gran Chaparral	5.0	44.6	106.7	28.9	66.7	234.7	60.6	58.8	73.7	109.3			827.9
El Pardillo 3	14.5	24.6	61.0	14.5	34.5	150.7	25.9	83.7	114.7	73.3			597.4
El Saladillo	6.1	44.1	83.7	13.1	92.6	141.5	46.1	52.8	47.5	98.2			625.7
Emiliano Zapata	37.9	105.3	55.0	7.9	29.9	152.3	83.7	75.9	94.0	81.4			723.3
Estancia de Ánimas	2.0	37.2	111.0	6.8	81.2	168.8	90.8	53.6	86.0	121.8			759.2
La Victoria	9.0	22.8	112.4	19.4	58.6	93.0	67.2	45.2	56.2	73.2			557.0
Las Arcinas	7.0	40.8	109.2	24.4	29.8	194.4	95.0	83.0	96.4	93.2			773.2
Loreto	9.2	29.0	94.6	10.0	41.2	223.8	118.4	30.2	66.4	102.2			725.0
Marianita	14.6	42.4	61.2	31.2	14.4	82.9	64.6	43.6	34.0	89.2			478.1
Mesa de Fuentes	9.6	49.2	74.8	7.6	10.4	190.2	90.4	37.2	108.2	105.2			682.8
Mogotes	19.6	36.2	39.6	4.6	10.0	167.6	94.0	35.2	31.2	61.6			499.6
Momax	8.2	28.2	98.2	20.2	38.8	228.2	244.6	103.2	81.2	77.6			928.4
Providencia	64.9	89.0	80.3	17.9	62.8	205.0	116.0	89.8	93.5	129.1			948.3
Rancho Grande	15.8	36.4	61.4	5.6	9.4	77.4	81.6	32.6	126.6	89.2			536.0
Santa Fe	9.8	44.2	74.8	0.0	11.8	173.4	114.2	106.2	75.8	120.8			731.0
Santa Rita	20.2	49.4	79.9	12.5	13.0	180.1	114.8	86.8	56.1	111.6			724.4
Santo Domingo	8.6	39.8	66.0	6.0	27.0	179.0	131.6	67.4	66.8	68.6			660.8
Sierra Vieja	7.5	45.4	73.4	20.6	29.9	193.9	50.8	59.3	96.8	94.3			671.9
Tanque Hacheros	12.4	40.4	64.6	32.0	59.2	103.0	63.0	27.2	101.6	78.0			581.4
Tierra Blanca	1.6	36.4	69.2	17.0	17.8	217.2	123.0	77.0	61.0	123.2			743.4
U.A. Agronomía	25.2	55.0	116.0	21.0	10.6	281.4	68.6	49.0	118.0	156.6			901.4
U.A. Biología	21.0	55.6	112.2	22.8	35.2	222.6	92.8	60.2	137.2	125.8			885.4
Villanueva	4.8	47.8	102.6	24.6	21.0	176.8	142.0	108.0	89.2	114.4			831.2
PROMEDIO	15.8	49.8	77.6	14.3		183.4	96.1	64.2	82.9	97.7			711.3
VALOR MÁXIMO	64.9		116.0	32.0		287.8		190.0	137.2				948.3
VALOR MÍNIMO	1.6	22.8	39.6	0.0	2.4	77.4	25.9	27.2	31.2	59.0			478.1

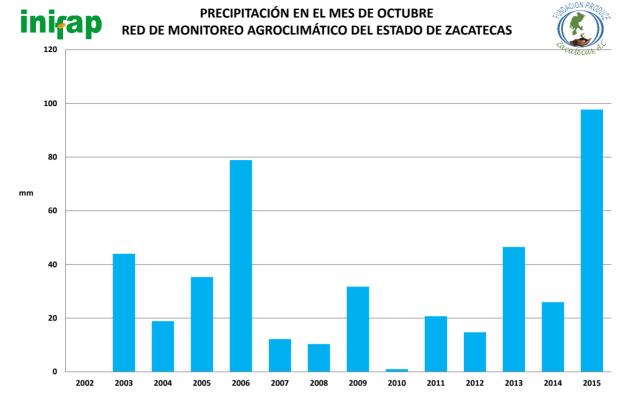


FIGURA 12. PRECIPITACIÓN PROMEDIO DEL MES DE OCTUBRE, CONSIDERANDO LAS 36 ESTACIONES DE LA RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS.

Literatura citada

- ADCON. 2000. Addvantage A730. Manual del usuario. Versión 3.4. 388 p.
- Critchfield. 1983. General Climatology. 4^a. Ed. Prentice Hall Inc. New Jersey, USA. 453 p.
- FAO. 1981. Informe del proyecto de zonas agroecológicas. Vol. 3: Metodología y resultados para América del Sur y Central. FAO 48/3. Roma. 143 p.
- Flores L., H. E. y Ruiz C., J. A. 1998. Estimación de humedad del suelo para maíz mediante un balance hídrico. Terra. Vol. 16 No. 3. 219-229.
- Frere, M. y Popov, G. F. 1980 Pronóstico de cosechas basado en datos agrometeorológicos. Estudio FAO: Producción y protección vegetal No. 17. Roma. 66p.
- Instituto Nacional de Estadística Geografía e Informática (INEGI). 2006. Anuario estadístico edición 2003. Zacatecas. Versión en disco compacto.
- Israelsen, O. W., y Hansen, V. E. 1965. Principios y aplicaciones del riego. Seg. Ed. Editorial Reverte, Barcelona, España. 385pp.
- Medina G., G.; Ruiz C., J. A. y María R., A. 2004. SICA: Sistema de Información para caracterizaciones agroclimáticas. Versión 2.5. Documentación y manual del usuario. Tema didáctico Núm. 2. Segunda edición. Centro de Investigación Regional Norte-Centro. Campo Experimental Zacatecas. Calera, Zacatecas, México. 74 p.
- Medina G., G. y Torres G., A. 2007. Red de Monitoreo Agroclimático del estado de Zacatecas. Desplegable informativa Núm. 15. Centro de Investigación Regional Norte-Centro. Campo Experimental Zacatecas. Calera, Zacatecas, México.
- Ortiz S., C. A. 1987. Elementos de agrometeorología cuantitativa. Tercera edición. Departamento de Suelos. Universidad Autónoma Chapingo. Chapingo, México. 326 p.
- Palacios V., E. y García A., E.1989. Introducción a la teoría de la operación de distritos y sistemas de riego. Colegio de postgraduados. Centro de Hidrociencias. Montecillo, Edo. De México. México. 482pp.
- Rice, R. C., Bowman, R. S., y Jaynes, D. B. 1986. Percolation of water below an irrigated field. Soil Sci. Soc. Am. J. 50:855-859.
- Sánchez, S. R., F. J. 2005. Evapotranspiración. [En línea: 27 de julio de 2005] http://web.usal.es/~javisan/hidro/hidro.htm. [Consultado: 27 de julio de 2005]

- Silva S., M. M. y Hess, M. L. 2001. Caracterización del clima en el norte de Tamaulipas y su relación con la agricultura. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro de Investigación Regional del Noreste. Campo Experimental Río Bravo, Río Bravo Tamaulipas, México. 50 p. (Publicación técnica No. 1).
- Veenhuizen, R. Van. 2000. Revisión de bases técnicas. En: Manual de captación y aprovechamiento del agua de lluvia. Experiencias en América Latina. Serie: Zonas áridas y semiáridas No 13. Oficina regional de la FAO para América Latina y el Caribe. Santiago, Chile
- Villalpando I., J. F. 1985. Metodología de investigación en agroclimatología. Documento de circulación interna mimeografiado. INIA-SARH. Zapopan, Jalisco. 183 p.
- Villalpando I., J. F. y Ruiz C., J. A. 1993. Observaciones agrometeorológicas y su uso en la agricultura. Editorial Limusa, S. A. de C. V. México, D. F. 133 p.
- Withers, B. y Vipond, S. 1982. El riego, diseño y práctica. Tercera reimpresión. Ed. Diana. México, D.F. 350 pp.

Comité Editorial del Campo Experimental Zacatecas

Presidente: Dr. Francisco G. Echavarría Cháirez Vocal: Dr. Manuel de Jesús Flores Nájera

Revisión y edición

Dr. Alfonso Serna Pérez Dr. Luis R. Reveles Torres

CAMPO EXPERIMENTAL ZACATECAS Kilómetro 24.5 Carretera Zacatecas-Fresnillo Apartado postal No. 18 Calera de V.R., Zac., 98500

> Tel: (478) 9-85-01-98 y 9-85-01-99 Fax: (478) 9-85-03-63

Correo electrónico: <u>direccion@zacatecas.inifap.gob.mx</u> Página WEB: <u>http://www.zacatecas.inifap.gob.mx</u>

Toda la información presentada en esta publicación proviene del proyecto: RED DE MONITOREO AGROCLIMÁTICO DEL ESTADO DE ZACATECAS Financiado por la FUNDACIÓN PRODUCE ZACATECAS, A.C.

Esta publicación se terminó en octubre del 2015. Tiraje impreso: 50 ejemplares Difusión en formato PDF

